

INL/EXP-18-51470 Innovation & Entrepreneurship

> Weather Based <u>Dynamic Line Rating</u> with Computational Fluid Dynamics using INL's General Line Ampacity State Solver (GLASS) software

Jake P. Gentle, MSMCE

Senior Power Systems Engineer Critical Infrastructure Security Idaho National Laboratory

Office: (208) 526-1753 Email: jake.gentle@inl.gov windsim

Innovation Showcase

It's always about the MONEY!

\$20,000,000,000 Yes, **BILLION** over the next 10 years

DLR Relieves High Congestion Costs

Data Sources: Multiple sources. Go to www.advancedtransmission.org for more information © 2017 WATT Coalition

How Dynamic Line Rating + CFD works

Reliability Enhanced Financial Gain

Sorted Calculated Ampacity Improvement and Load Headroom

Utility Sponsored Case Study **Results** showing DLR enhancements over static ratings

Competitiveness of DLR based on CFD

INL's solution with Weather, CFD and forecasting has a number of advantages:

The lowest cost of quality

Flexible and portable solution

Smart grid interoperability

Enhancement to existing solutions

Cooperation model with potential partners such as sensor manufacturers, solution providers and system integrators

Monitor	Cost				Accuracy				
	Purchase Cost	Install Cost	Maintain Cost	Line Outage	Measurement Reach	Normal Wind High Load	Normal Wind Low Load	High Load Low Wind	High Load High Wind
Weather	low	low	low	no	variable	good	good	low	good
Weather + CFD	low	low	low	no	wide area	high	good	good	high
Weather + CFD +		Highest Accuracy / Lowest Cost Solution							
Forecasting*	medium	low	low	no	wide area	high	high	good	high
Conductor Replica	low	low	low	no	variable	good	good	good	good
Temperature	hìgh	medium	high	no	point	good	low	good	good
Tension	high	high	high	yes	multi span	good	low	high	good
Sag	high	medium	high	no	multi span	good	low	high	good
Combined*	low	medium	medium	yes	multi span	good	good	high	good

It's Being Adopted and Integrated

ISO Support:

- ERCOT Incorporated Dynamic Line Ratings into Security Constrained Economic Dispatch.
- PJM Engaged in DOE-funded pilot project & study
- SPP Held Operational Reliability Working Group session on DLR in May 2017. Actively seeking DLR pilot project.

Government/Regulator Support:

- FERC hosted session on "Forecasting of Dynamic Line Ratings for Market Systems" on June 26, 2017.
- DOE report and pilot project funding 2014.
- On-going Office of Electricity and Idaho National Laboratory project.
- California Energy Commission RD&D.

Current Development

- DOE Technology Commercialization Fund project
 - (FY18-19), \$300k DOE, \$300k WindSim Americas
- □ Finalizing R&D industry pilot with utility partner in Idaho
- R&D 100 Finalist (GLASS Software only), 2017
- □ R&D 100 Finalist (GLASS + CFD + Utility), 2018
 - Awards announced November 2018
- Peer Reviewed Publications and Awards
 - IEEE, AWEA, AMS, CIGRE, EWEA, NWA, others
- Idaho National Laboratory and WindSim are in completion of <u>DOE Energy I-Corps Program Cohort 3 -2016</u> – Technology to Market program.

Commercialized State

- Fully Integrated Solution that has minimal impact on utilities existing infrastructure, while enabling new dynamically calculated line rating limits to be used in transmission line operations.
- □ Modern EMS/SCADA systems make this integration possible.
- Human Factors/Performance developed control center displays.
- Software as a Service (SaaS)-based Solution provides access to the line-based alerting technology using either existing or new weather observations AND weather forecasts.
- Utility-hosted Solution with Engineering Consultation and Support

Next Steps

Needs

- Capital Investment/Partnership
 - Field validation and Forecast solution demonstration
- Exposure and Customer Engagement
- Equipment/Service Supplier Partners
- Incubation Support

Jake P. Gentle, MSMCE

Senior Power Systems Engineer Critical Infrastructure Security Idaho National Laboratory

Office: (208) 526-1753 Email: jake.gentle@inl.gov

Idaho National Laboratory

WIND INTEGRATION R&D Concurrent Cooling, Dynamic Line Rating

Jake P. Gentle – jake.gentle@inl.gov