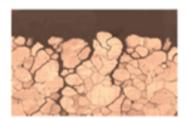
Air Force Sustainment Center

Innovation at the Speed of Production: How Reverse Engineering and Additive Manufacturing is Changing the Face of Sustainment

Lt Col Chris Blackwell Director, AFSC Innovation Centers AFSC/EN


Aging A/C Provide Engineering Challenges

Structural Fatigue

Power Cycles

Stress Corrosion Cracking

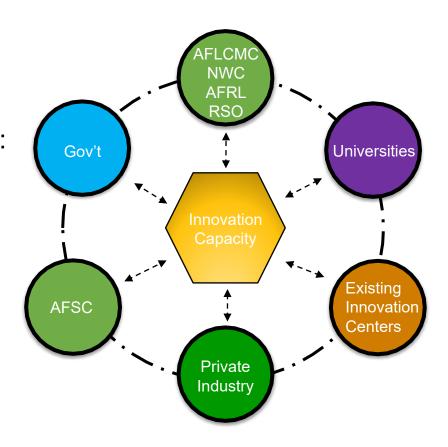
Corrosion Exfoliation

Ti Disk Failure

UNCLASSIFIED//FOUO

Chafing

UV and Chemical Exposure


Thermal Exposure

Challenging problems require innovative thinking!

Innovation Ecosystem

- Fosters collaborative environment to:
 - Leverage other's contributions & capabilities
 - Optimize available resources
 - Answer workforce needs
 - Build relationships

Why AFSC Innovation Centers

Approximately 13,000 AFMC Scientists, Engineers and Technicians Nearly 50% (6,332) reside at AFSC locations

Problem: Solvers: Solutions: Impact (FY18):

Aging W/S
No Tech Data
Redesign: 4.6 yrs
New Repair: 3.2 yrs
Test/Qual: 2.1 yrs
Part availability
Time critical need
Low quantity buys

REACT REARM RECLAIM

Collaboration with:

RSO

AFLCMC

AFRL

Academia

Industry

Solved constraints for: 16 Weapon systems Supply Chain DLA

> \$900K 58K+ man hours 1500+ items 3D mfg

Saved:

Laser De-paint: 15 F-16s

Those closest to the problem are closest to the solution

AFSC Innovation Vision

Centers where govt, industry, & academia collaborate to innovatively solve problems

- Provide advanced, state-of-the-art, agile, manufacturing technology
- Enable partnerships to generate rapid, innovative solutions
- Develop organic agile manufacturing capabilities
- Train organic workforce to think innovatively

Solutions That Span Spectrum of Innovation

Innovating with Mature Technology

Now Term

Spectrum of Innovation

Pushing boundaries of S&T

Long Term

Polymer Printers

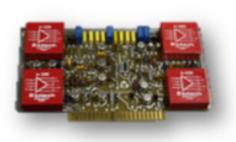
Metal Printers (Tooling)

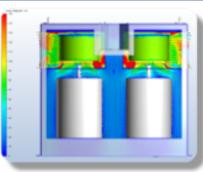
- Laser De-paint
- Laser Scanners

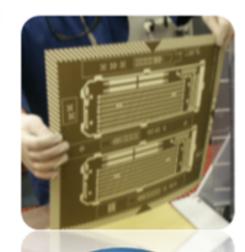
Sand Casting Printers

- Metal Printers for A/C worthy Parts
- Exotic materials and Processes
- Whole A/C single pass inspection

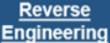
AFSC Innovation Ecosystem


5 elements executed across the ALCs maximize overall value and take advantage of unique opportunities


Robins Tinker Hill **AFSC Virtual IC Hub** Workforce access to existing infrastructure **Academic Partnerships** Intellectual capital OU/OSU/UCO/Rose State Weber State, U of U GT/Mercer **External Partnerships Industrial Expertise GTMI** OKCid/GE BH All Sites: OEM: **DoD Interfaces Exploit DoD efforts** ATTC **ATTC** All Sites: AFRL/DLA/AFLCMC/RSO **Expand organic** REARM REACT RECLAIM capabilities


AFSC Organic Innovation Center

Reverse Engineering, Avionics Redesign, and Manufacturing



WARNER ROBINS AIR LOGISTICS COMPLEX

- Technical Data Development
- Test and Requirements Generation
- CAD Generation

Hybrid Manufacturing

- Integrated Circuits
- Hybrid Microelectronics
- RF Components
- PWB, CCA

Avionics

Redesign

- Form/Fit/Function Redesign
- New System Development

LRU, SRU

Enable continued operation of aging aircraft systems Filling the gap between industry capability and USAF requirements

REARM Capabilities

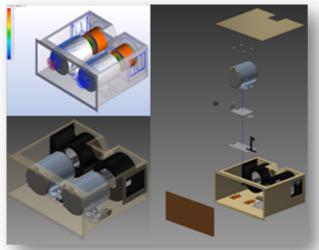
- Printed Circuit Board (PCB) Computer Aided Design
- Electronics Repair Capability Development
- Technical Data Package Creation
- Software/Firmware Extraction
- Form-Fit-Function Avionics Redesign
- Electronics Development
- In-house Avionics Prototype Production
- Technical Order Generation
- Hybrid Microcircuit Manufacturing (MIL-PRF-38534)
- MIL-STD-883 Tests and Inspections
- Counterfeit Part Screening
- First Article Tests
- Manufacturing of Avionics Systems
- Manufacturing Multilayer PWBs (up to 22 layers)
- Manufacturing Flex Circuits (up to 6 layers)
- Manufacturing Single/Double Sided PWBs
- Manufacturing of Cables

Multi-layer 3D PCB Printing

Power/Glitching Analysis

3D Polymer Printing

Laser PCB Prototyping


PCB Fault Verification


Handheld 3D Measurement

REARM Successes

F-15 AIS 750 CFM Blower Assembly

A-10 Gun Control Unit Redesign

F-15 ALR-56 Filter Board Assembly

A-10 LFWD JSECST RWR Coupler

FY19:

- \$5.7M+ in cost benefits (avoidance/savings) to customers
- 19+ DoD projects, 27K+ labor hours, \$3.6M+ in revenue
- Supported 10+ DoD customers
 - 15+ different Weapon Systems

Since October 2016 (Innovation Center inception)

- \$80M+ in cost benefits (avoidance/savings) to customers
- 50+ DoD projects, 80K+ labor hours, \$13M+ in revenue
- Supported 10+ DoD customers
 - 20+ different Weapon Systems

AFSC Organic Innovation Center

Rapid Engineering of Composites, Low Observables, And Innovative Materials

Enable continued operation of aging aircraft systems Filling the gap between industry capability and USAF requirements

RECLAIM Capabilities

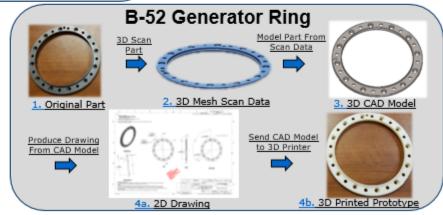
Creaform HandySCAN 700

- Portable
- Quick 480,000 measurements/s
- · Metrology-Grade Accuracy 0.0012 in.
- High Resolution 0.0020 in.
- Recommended Part Size (0.3 13 feet)

Other capabilities include: Reverse Engineering Computer Aided Design (CAD) Technical Data Packages Engineering Drawings 3D Scanning

Accuracy 0.001-0.002 in./in.
 Very Fine Detail – 0.0005 in. resolution

Printable CAD file types: Solidworks, STL, Parasolid, IGES, STEP


RECLAIM Successes

FY19:

- \$1M+ in cost benefits (avoidance/savings) to customers
- 297 DoD projects, 1K+ labor hours, \$300K+ in revenue
- Supported 20+ DoD customers
 - 12+ different Weapon Systems

Since October 2016 (Innovation Center inception)

- \$2M+ in cost benefits (avoidance/savings) to customers
- 775+ DoD projects, 3K+ labor hours, \$600K+ in revenue
- Supported 20+ DoD customers
 - 12+ different Weapon Systems

AFSC Organic Innovation Center

Reverse Engineering and Critical Tooling

Re-engineering, Additive Manufacturing, Advanced Manufacturing supporting Air Logistics Complexes, Supply Chains, and SPOs

REACT Reverse Engineering Capabilities

Optiv Classic (3D Probing & Optics)
-Highly accurate measurement of small parts <15"

Artec Space Spider (Structured Blue Light) -Ideal for small volumes and can collect color/texture of object

Leica AT960-LR (3D Probing & Laser Scanning)

-Good for large volume measurements

Creaform HandyScan 700 (Laser Scanner) -Quick data collection for small to medium volumes

Romer Absolute Arm (3D Probing & Laser Scanning)

- Quick data collection for small to medium volumes

Software

- SolidWorks/Autodesk Inventor/Catia (Computer Aided Design)
- Geomagic ControlX/Metrolog/Spatial Analyzer (Metrology)
- Geomagic DesignX (Reverse Engineering)

REACT Additive Manufacturing Capabilities

MakerBot Z18s (2 machines) MakerBot X2s (2 machines)

CJP (Color Jet Printing)

3D Systems Projet 860 Build Volume: (20"x 15"x 9") Material: Gypsum Powder

Accuracy:

SLA (Stereolithography)

Formlabs Form 2

Build Volume: (5.7"x 5.7"x 6.9") Material: Photo cured resins Accuracy: Geometry dependent

(ballpark ± .005")

FDM (Fused Deposition Modeling)

Stratasys Fortus 450

Build Volume: (16"x 14"x 16") Material: Polymer Filament

Accuracy: ± .005" (OR ± .0015 in/in)

Layer Thickness: (0.013 in to 0.005 in)

FDM (Fused Deposition Modeling

Stratasys Fortus 900

Build Volume: (36"x 24"x 36") Material: Polymer Filament

Accuracy: ± .0035" (OR ± .0015 in/ Layer Thickness: (0.013 in to 0.007

SLS (Selective Laser Sintering)

Laser Sintered Polymer Powder

EOS P396

Build Volume: (13.4"x 13.4"x 23.6")

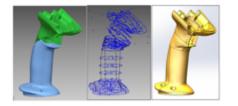
Laser: 70-watt fibre laser Material: Nylon Powder

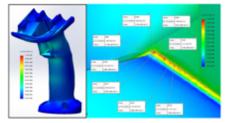
DMLS (Direct Metal Laser Sintering)

Laser Sintered Metal Powder

EOS M290

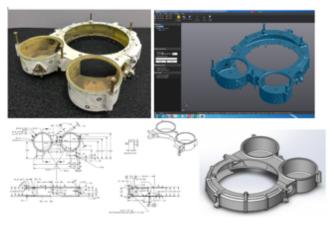
Build Volume: (9.8"x 9.8"x 12.8")

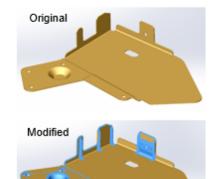

Laser: 400-watt fibre laser


Material: Stainless Steel Powder 17/4

PH

REACT Successes




B-1B Stick Grip Fatigue Analysis

B-1B SPR Defuel & Pressurization Tool

B-1 FWD Landing Gear Wheel Cover

B-52 Ejection Seat Cover

F-16 MLG Bushing Bore Repair Tool

B-1 Interior Panels

F-16 Fuel Tank Hydraulic Clamp

FY19:

- \$30M+ in cost benefits (avoidance/savings) to customers
- 308 DoD projects, 13K+ labor hours, \$2.5M+ in revenue
- Supported 20+ DoD customers
 - 12+ different Weapon Systems

Since October 2016 (Innovation Center inception):

- \$50M+ in cost benefits (avoidance/savings) to customers
- 625+ DoD projects, 15K+ labor hours, \$3M+ in revenue
- Supported 20+ DoD customers
 - 12+ different Weapon Systems

Innovation Breeds Innovation

Custom Circuit Card Guides

76th Software Mx Group (OC-ALC, Tinker AFB)

TF33 Diffuser Case Plasma Spray Mask

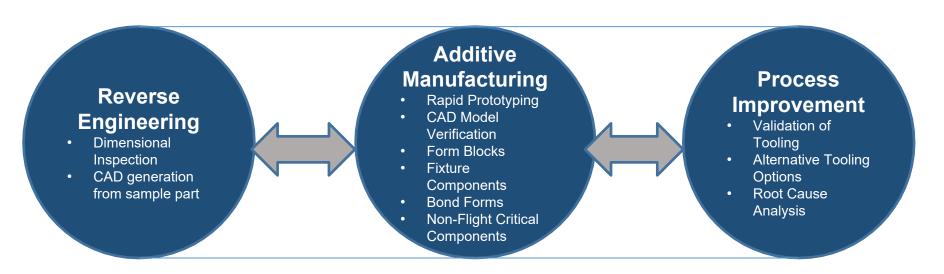
76th Propulsion Mx Group (OO-ALC, Tinker AFB)

402 Commodities Mx Group (Robins AFB)

Post Processing Capabilities

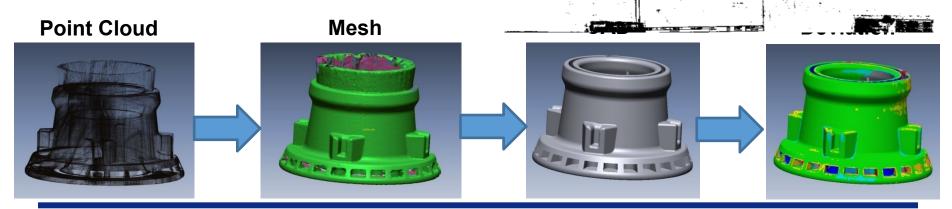
- 3 & 5 Axis Mill
- Wire EDM
- Bandsaw
- Shot Peen
- Bead Blast
- Wet Blast

Heat Treat



76TH COMMODITIES MAINTENANCE GROUP

What Can REACT Do For You?


76 CMXG - REACT Engineering Team — B9001 Post DD-20

Supervisor: Jason McCurry

Why Are We Reverse Engineering

- Legacy Weapon Systems Have Missing or Inadequate Technical Data
- Legacy Tooling Is Worn
- No Tooling
- Custom Repairs
- Dimensional Verification
- Equipment Repairs

Why Additive Manufacturing?

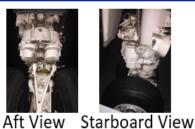
- Minimize Depot Maintenance Costs
 - Flow Time & Material
- Rapid Prototyping
- Dimensional Verification
- Rapid Design Iteration
- Low Volume Tooling

What Are We Making With AM

Tooling and Prototyping

- Sheetmetal Form Blocks
 - ■Verification Before Designing Form Block
 - ■Form Blocks Solid & Partial Fill
 - Shell For Casting Epoxy Form Blocks
- Fixtures
 - ■End Item Assembly
 - ■Fit Check Verification
 - Machining
 - Welding
 - Drilling
- Equipment
 - ■Replacement Parts

Non-Flight-Critical Aircraft Parts


- Verification Of Custom Repairs
- Plastic Parts
 - Dust Covers
 - Switches
 - Arm Rests
 - Clamps
 - Dash Panels
 - Cable Retention

B-1 Nose Landing Gear Cover Tech Data Package Creation

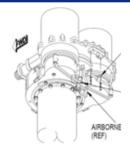
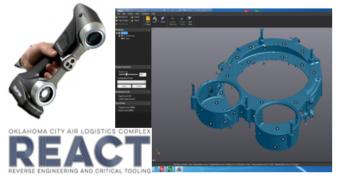
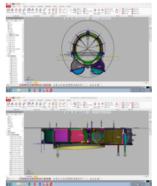
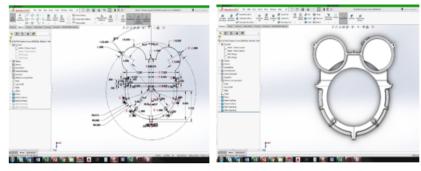


Image from TO 32-51-11-2 represents the only tech data available for the gear box cover


30513-2

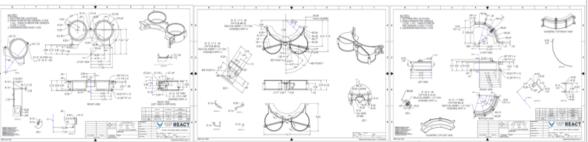


PN 30511-1


PN 30513-1

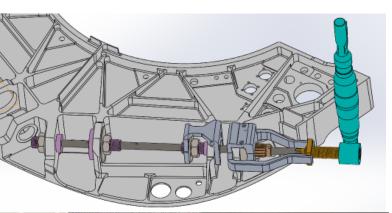
Digital Scan Of Sample Parts Create A Mesh

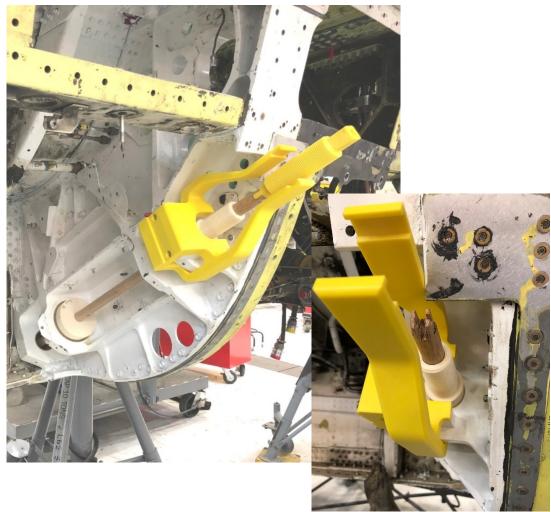
Make CAD Model Based On Sample Part Measurements



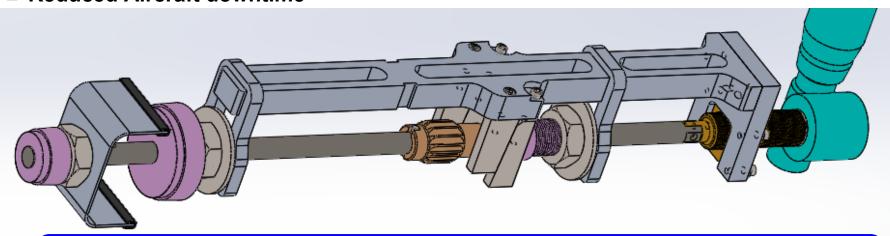
Additively Manufacture Ideal CAD Model & Perform Fit Checks

Deliver TDP including CAD Model & Level 3 Drawings


F-16 MLG Bushing Bore Repair Problem


View Looking Aft

F-16 MLG Bushing Bore Repair Fit Check



F-16 MLG Bushing Bore Repair Impact

- Easily transportable
- Minimized travel requirements
- Reduced repair time from 2 weeks to 2 days
- Improved concentricity of end results
- Moved repair to lower working level
- Reduced Aircraft downtime

Available to field units

B-1 Wing Sweep Drive Shaft Testers

Project Info:

- B-1 PDM is overhauling 10-15 drive shafts annually, but cannot safely test overhauled shafts to 7,000 in-lbs per specs
- Previous failures have occurred in flight damaging the part and surrounding structures in the intermediate weapons bay
- To verify the metal AM tool a test spline was printed and torqued to 10,500in-lbs.
 The part showed no damage or signs of yielding

Projected Savings:

- Current methods used to test the shafts are dangerous for personnel and risk damaging the part
- If typical manufacturing methods were used the design would have been manufactured in several additional parts using multiple machines
- Overall cost avoidance by using Metal Additive Manufacturing vs Traditional Manufacturing was 90 flow days and \$29,520 (120 hours at \$246 local man's shop rate)

B-1 Interior Panels AM Phase I and II

Problem Statement

- B-1B aircraft interior panels are deteriorating due to 40+ years in service and spares are not readily available and AMAR
- Phase I: B-1 SPO funded reverse engineering of 8 interior panels and create technical data package that allows them to be additively manufactured.
- Phase II: SPO funded additional RE for 13 more panels along with TDPs for using AM techniques.

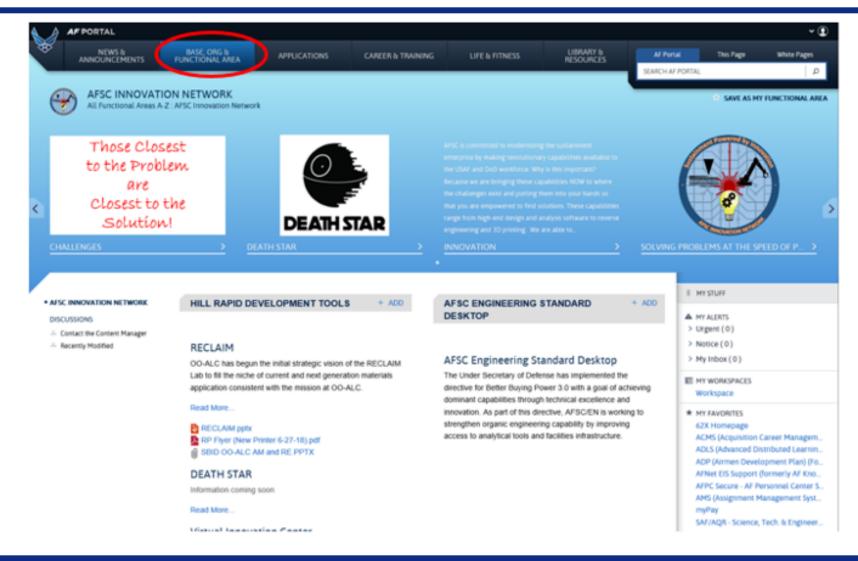
Project Description

- REACT engineers modeled parts with existing technical data from JEDMICS and provided samples, working with the SPO to improve panel design and durability
- REACT additively manufactures these reverse engineered panels for B-1s during depot level maintenance to replace old, worn, and damaged panels.
- Current ship set of reverse engineered panels is currently
 21 part numbers, with one ship set provided every month.

Part Image

Annual Cost Avoidance

- Average panel savings compared to historical procurement cost: \$1,640.32 per panel
- Current # of panel replacements per aircraft: 21
- Current savings per aircraft: \$34,446.72
- Savings per year based on twelve 21-panel ship sets:\$413,360.64
 - Phase I = ~\$157,470.72 annually
 - Phase II = ~\$255,889.92 annually


Conclusion

- Innovation is core to AFSC operations
- Expanding Innovation Network
 - Solving constraints at the speed of production
 - Growing our problem solving capabilities
- Leveraging technologies ahead of the TRL curve
- Creating a world class innovative workforce

Not only for AFSC...but available to the entire DoD

USAF Portal Page

Contact Info

Jason McCurry, Chief REACT Lab (405) 582-4015 jason.mccurry.1@us.af.mil

Mark Lucash, Lead Reverse Engineering (405) 582-4302 mark.lucash@us.af.mil

Jason Mann, Lead Additive Manufacturing (405)-622-7607 jason.mann.6@us.af.mil

Lt Col Chris Blackwell
Director, AFSC Innovation Centers
(405) 736-3042
christopher.blackwell@us.af.mil

Damon Brown, Chief REARM Lab (478)-327-8655 damon.brown@us.af.mil 402EMXG.REARM.Workflow@us.af.mil

RECLAIM

Dr. David Hansen, TD Hill AFB (801) 777-5318 david.hansen.12@us.af.mil

Slade Knightly, Chief RECLAIM (801) 775-2167 slade.knightly@us.af.mil

